Two New Thiophosphates with Interlocked Structures: AgTi₂(PS₄)₃ and Ag₂NbTi₃P₆S₂₅

J. Angenault, X. Cieren, G. Wallez, and M. Quarton¹

Laboratoire de Cristallochimie du Solide, Université Pierre et Marie Curie — Paris VI, 4 place Jussieu, 75252 Paris cedex 05, France

Received January 18, 2000; in revised form March 27, 2000; accepted April 7, 2000; published online June 27, 2000

The crystal structures of AgTi₂(PS₄)₃ and Ag₂NbTi₃P₆S₂₅ were determined from single-crystal X-ray diffraction data. AgTi₂ (PS₄)₃ crystallizes in the orthorhombic system, space group Ccc2 (no. 37), a = 34.691(4) Å, b = 20.018(2) Å, and c = 11.576(2) Å, V = 8039(4) Å³, Z = 16. The structural skeleton is built up from TiS₆ octahedra and PS₄ tetrahedra linked to each other by edges. It exhibits very wide tunnels along the c axis. $Ag_2NbTi_3P_6S_{25}$ crystallizes in the orthorhombic system, space group Pccn (no. 56), a = 22.609(2) Å, b = 27.694(2) Å, and c = 11.589(1) Å, V = 7256(4) Å³, Z = 8. The structure is made of edge-sharing TiS₆ octahedra, PS₄ tetrahedra, P₂S₆ bitetrahedra, and Nb₂S₈₊₄ tetracapped trigonal biprisms. The Nb₂S₈ entity includes two disulfide anions $(S_2)^{2-}$ and an Nb^{IV}–Nb^{IV} bond. The formula of the compound can be written as $Ag_4^INb_2^{IV}Ti_6^{IV}$ $(P_2S_6)^{2-}(PS_4)_{10}^{3-}(S_2)_2^{2-}$. Each of the two structures presents two interlocked sublattices of polyhedra chains linked together by bridging S-Ag-S bonds. For AgTi₂(PS₄)₃ the ionic conductivity measured along [001] is in agreement with a strong delocalization of Ag⁺ ions in the wide tunnels. © 2000 Academic Press

Key Words: thiophosphates; sulfurs; open structures; interlocked structures; ionic conductivity.

INTRODUCTION

2D (layers) and 3D (tunnels) open-structure compounds exhibit generally good ionic conductivity, especially when mobile cations are monovalent (Li⁺, Na⁺, Ag⁺) (1,2). So the transition metal sulfides MS_2 and thiophosphates MPS_3 , with the same 2D structure type, are known as excellent intercalation materials (3,4). Other thiophosphates exhibit the MPS_3 structure type, like $A^1MP_2S_6$ with A = Cu (5,6) or Ag (7–10). The thiophosphates which host large alkali cations lead to original low-dimensional structures due to the separation of anionic polyhedra layers: $RbVP_2S_7$ (11) and KNiPS₄ (12). In contrast, a 3D structure with wide tunnels is obtained with Na⁺ for NaTi₂(PS₄)₃ (13). In this paper we present the homologous silver compounds $AgTi_2(PS_4)_3$ and $Ag_2NbTi_3P_6S_{25}$ with original structures that shows many similar features. In addition to crystal structure determinations, we report ionic conductivity measurements for $NaTi_2(PS_4)_3$ and $AgTi_2(PS_4)_3$ compounds.

SYNTHESIS

The compounds were prepared by direct synthesis from Ag_2S , Nb, Ti, P, and S. Ag_2S was obtained by precipitation of silver acetate (CH₃COOAg, Fluka, 99.0%) in thioacetamide solution. Powders of the elements were commercially obtained from Aldrich: Nb metal (99.9%), Ti metal (99.9%), red P (99.99%), and S (99.98%).

$AgTi_2(PS_4)_3$

Stoichiometric amounts of starting materials were mixed and then put in a dry evacuated sealed silica tube. After a slow heating to 600° C (2° C.hr⁻¹), 3 days at 600° C, and a slow cooling (5° C.hr⁻¹), we obtained small dark entangled needles with metallic luster. These air-sensitive single crystals were kept and handled in a dry glovebox, stored in a sealed-off Lindemann glass capillary.

$Ag_2NbTi_3P_6S_{25}$

Crystals were synthesized by mixing powders of Ag_2S , Nb, Ti, red P, and S in stoichiometric amounts in order to obtain the hypothetical "AgNbTi(PS₄)₃" compound. The same thermal treatment as above was used. Finally, in addition to different known niobium thiophosphates like Nb₄P₂S₂₁ (14) and Nb₂PS₁₀ (15), we isolated black single crystals of Ag₂NbTi₃P₆S₂₅.

STRUCTURE REFINEMENTS

The analytical and crystallographic data are gathered in Table 1. The recorded intensities were first corrected for the

¹ To whom correspondence should be addressed. Fax: 33-1 44 27 25 48. E-mail: mq@ccr.jussieu.fr.

		3- 6-25	
	AgTi ₂ (PS ₄) ₃		Ag ₂ NbTi ₃ P ₆ S ₂₅
	Crystal D	Data	
Crystal system	Orthorhombic		Orthorhombic
Space group	Ccc2 (no. 37)		Pccn (no. 56)
Unit cell dimensions	a = 34.691(4) Å		a = 22.609(2) Å
	b = 20.018(2) Å		b = 27.694(2) Å
	c = 11.576(2) Å		c = 11.589(1) Å
	$V = 8039(4) \text{ Å}^3$		$V = 7256(4) \text{ Å}^3$
Theoretical density	2.252 g.cm^{-3} (2	Z = 16)	$2.636 \text{ g.cm}^{-3} (Z = 8)$
	Data Colle	ection	
Temperature		293 K	
Diffractometer		Enraf-Non	ius CAD4
Radiation (graphite monochromator)		$MoK\alpha - \lambda$	L = 0.71069 Å
Scans/speed		ω -2 θ /1.7 to	$0.20.1^{\circ}.min^{-1}$
2θ range/scan breadth		$2-44^{\circ}/8 +$	$0.345 \tan \theta$
No. of standard		3/60 min	
reflections/frequency		,	
Crystal size	$0.5 \times 0.3 \times 0.2$ n	1m ³	$0.4 \times 0.2 \times 0.2 \text{ mm}^3$
Linear absorption	$\mu = 3.14 \text{ mm}^{-1}$		$\mu = 3.62 \text{ mm}^{-1}$
h/k/l ranges	0-40/0-23/0-1	3	0-22/0-27/0-11
No. of observed	3741		6285
reflections			
	Structure Ref	inement	
Transmission factors (16	$0.399 < \tau = 0.5$	52	$0.495 < \tau < 0.617$
No. of parameters	370		349
Reliability factors	R = 0.079		R = 0.085
$w = 1/\sigma^2$	R = 0.054		R = 0.061
Extinction parameter	$a = 0.362(9) \times 1$	0^{-6}	$a = 0.25(1) \times 10^{-6}$
Electronic residues (min./max.)	-0.39/0.54 e.Å	- 3	$-0.82/0.69 \text{ e. } \text{\AA}^{-3}$

 TABLE 1

 Data Collection and Refinement Conditions for AgTi₂(PS₄)₃ and Ag₂NbTi₃P₆S₂₅

Lorentz and polarization factors, then for the absorption phenomena (16). A centrosymmetry test (17) was achieved from the diffracted intensities of $AgTi_2(PS_4)_3$ and it showed that the noncentrosymmetric space group *Ccc2* was retained. The atomic positions were determined by direct methods with the SHELXS-86 program (18) and refined with the ORXFLS program (19), taking into account the secondary extinction (20). Sites of Ag atoms are not completely occupied in both structures and consequently in the final refinement the sum of the occupancies of these sites was constrained to the values needed to charge balance the formulae. Fairly high values of reliability factors (Table 1) are due to the bad crystal quality of our samples, which generated very weak diffracted intensities at high angles and non-negligible background.

Atomic coordinates and thermal parameters for $AgTi_2(PS_4)_3$ and $Ag_2NbTi_3P_6S_{25}$ are gathered in Tables 2 and 4 respectively. Main interatomic distances and inter-

bond angles for these two compounds are gathered in Tables 3 and 5 respectively.

STRUCTURES DESCRIPTION

The two structures are built up from irregular TiS_6 octahedra and PS_4 tetrahedra, sharing only edges alternatively to form polyhedra chains. Table 6 gathers geometric data for these polyhedra for the two compounds. The mean Ti-S and P-S distances indicate that the cations are in the

 TABLE 2

 Occupation Factors, Fractional Atomic Coordinates, and

 Equivalent Isotropic Displacement Parameters for AgTi₂(PS₄)₃

Atoms	τ	x	у	Ζ	$U_{\rm eq}({\rm \AA}^2)^a$
Ti(1)	1	0.34042(9)	0.4995(2)	0	0.030(2)
Ti(2)	1	0.3448(1)	0.1936(2)	0.4962(2)	0.035(2)
Ti(3)	1	0.3193(1)	0.1274(1)	0.9918(2)	0.028(2)
Ti(4)	1	0.4790(1)	0.3089(2)	0.9864(2)	0.043(2)
P(1)	1	0.3384(1)	0.3486(2)	0.4980(3)	0.033(3)
P(2)	1	0.2629(1)	0.4251(2)	0.9996(3)	0.029(3)
P(3)	1	0.4146(2)	0.4156(2)	0.9930(3)	0.033(3)
P(4)	1	0.3487(1)	0.1536(2)	0.7537(4)	0.034(3)
P(5)	1	0.3442(1)	0.1396(2)	0.2514(4)	0.034(3)
P(6)	1	0.4961(1)	0.2766(2)	0.2393(3)	0.034(3)
S(11)	1	0.3596(1)	0.5927(2)	0.1232(3)	0.038(3)
S(12)	1	0.2993(1)	0.2795(2)	0.5557(4)	0.045(4)
S(13)	1	0.3793(1)	0.2922(2)	0.4231(4)	0.035(3)
S(14)	1	0.3157(1)	0.5866(2)	0.8788(3)	0.040(3)
S(21)	1	0.2836(1)	0.4825(2)	0.1277(4)	0.041(3)
S(22)	1	0.2538(1)	0.1641(2)	0.0580(4)	0.044(3)
S(23)	1	0.2821(1)	0.0345(2)	0.9181(4)	0.043(3)
S(24)	1	0.3086(1)	0.4177(2)	0.8855(4)	0.052(4)
S(31)	1	0.4141(1)	0.3260(2)	0.9147(3)	0.039(3)
S(32)	1	0.3980(1)	0.4911(2)	0.8831(3)	0.045(3)
S(33)	1	0.4682(1)	0.4246(2)	0.0494(4)	0.045(4)
S(34)	1	0.3779(1)	0.4217(2)	0.1281(3)	0.042(3)
S(41)	1	0.3124(1)	0.1171(2)	0.6211(3)	0.055(4)
S(42)	1	0.3695(1)	0.0832(2)	0.8643(3)	0.041(3)
S(43)	1	0.3889(1)	0.1983(2)	0.6581(4)	0.052(4)
S(44)	1	0.3165(1)	0.2171(2)	0.8522(3)	0.045(3)
S(51)	1	0.3367(1)	0.0539(2)	0.1538(4)	0.051(4)
S(52)	1	0.3494(1)	0.2070(2)	0.1192(3)	0.041(3)
S(53)	1	0.3882(1)	0.1335(2)	0.3664(3)	0.046(3)
S(54)	1	0.2980(1)	0.1646(2)	0.3524(4)	0.058(4)
S(61)	1	0.4800(1)	0.2110(2)	0.8539(3)	0.034(3)
S(62)	1	0.5191(1)	0.3567(2)	0.8334(3)	0.048(4)
S(63)	1	0.4515(1)	0.2433(2)	0.1450(4)	0.048(4)
S(64)	1	0.5345(1)	0.3060(2)	0.1108(4)	0.044(3)
Ag(1)	0.570(6)	0.38430(7)	0.30921(9)	0.2127(2)	0.046(2)
Ag(2)	0.301(6)	0.2249(1)	0.5202(2)	0.2161(4)	0.059(4)
Ag(3)	0.206(6)	0.4025(2)	0.3259(3)	0.7115(5)	0.048(5)
Ag(4)	0.34(1)	0.5060(6)	0.0792(4)	0.131(3)	0.64(4)
Ag(5)	0.23(1)	0.4484(6)	0.987(1)	0.075(4)	0.61(6)
Ag(6)	0.203(9)	0.492(1)	0.984(1)	0.930(4)	0.61(6)
Ag(7)	0.15(1)	0.4555(7)	0.051(1)	0.175(8)	0.7(1)

 $^{a}U_{\mathrm{eq}}=(\sum_{i}U_{ii})/3.$

TABLE 3 Bond Distances (Å) and Interbond Angles (°) in the $AgTi_2(PS_4)_3$ Structure

Ti(1)		S(24)	S(14)	S(3	2)	S(11)	S(2	1)	S(34)
S(24)		2.378(6)	3.3925(8)	3.431	8(7)	4.7925(9)	3.209	8(9)	3.6964(8)
S(14)		90.5(2)	2.397(5)	3.437	0(7)	3.2147(9)	3.726	8(8)	4.8862(8)
S(32)		91.4(2)	91.1(2)	2.419	(5)	3.6927(8)	4.879	́ш)	3.2331(9)
S(11)	1	168 1(2)	83 3(2)	98 9(2)	(-)	2.441(5)	3 4 3 7	12(6)	3 4806(8)
S(21)		82 5(2)	00.5(2)	167.9(2)		88.4(2)	2 488	(5)	3 4907(8)
S(21) S(34)		82.3(2)	168.9(2)	81 9(2)		80.4(2)	2.400 88 6(2)	(3)	2 512(5)
3(34)		98.2(2)	108.9 (2)	01.9(2)		89.3(2)	88.0(2)		2.312(3)
Ti(2)		S(41)	S(54)	S(4	3)	S(12)	S(5.	3)	S(13)
S(41)		2.388(5)	3.291(1)	3.141	1(6)	3.3698(8)	3.964	4(9)	4.7876(8)
S(54)		86.9(2)	2.398(5)	4.787	(2)	3.2917(7)	3.194	8(8)	3.8913(7)
S(43)		81.6(2)	167.2(2)	2.420	(5)	3.7014(7)	3.618	(2)	3.3226(8)
S(12)		88.6(2)	85.9(2)	99.4(2)		2.435(5)	4.781	4(8)	3.1807(7)
S(53)	1	110.3(2)	82.6(2)	96.1(2)	1	157.1(2)	2.444	(5)	3.2587(8)
S(13)	1	162.3(2)	106.6(2)	85.9(2)	1	81.1(2)	83.4(2)	(-)	2.457(5)
Ti(3)		S(52)	S(44)	S(2	3)	S(42)	S(5	1)	S(22)
S(52)		2.409(5)	3.300(1)	4.774	2(8)	3.9153(9)	3.122	3(8)	3.4956(8)
S(44)		86.3(2)	2.418(5)	3.920	8(6)	3.2526(6)	4.832	(1)	3.3947(7)
S(23)	1	162.9(2)	108.3(2)	2.419	(5)	3.2449(7)	3.343	6(8)	3.2098(9)
S(42)	1	107.4(2)	83.9(2)	83.6(2)		2.448(5)	3.587	(2)	4.8729(9)
S(51)		79.8(2)	164 5(2)	86.6(2)		93.9(2)	2.459	(5)	3,7897(7)
S(22)		90.6(2)	87.2(2)	81.4(2)		159.2(2)	99.5(2)	(0)	2.506(5)
Ti(4)		S(64)	S(31)	S(6	2)	S(63)	S(3:	3)	S(61)
S(64)		2.404(5)	4.770(1)	3.410	(1)	3.1659(7)	3.379	7(6)	4.0051(8)
S(31)	1	162.2(2)	2.424(5)	3.812	3(9)	3.3964(8)	3.137	5(5)	3.3212(6)
S(62)		89.3(2)	103.0(2)	2.448	(5)	3.3497(7)	3.349	7(7)	3.2257(7)
S(63)		81.4(2)	88.3(2)	166.7(2)	(-)	2.450(5)	3.838	2(9)	3.571(2)
S(33)		88 1(2)	80.0(2)	86.2(2)		102 9(2)	2 457	(6)	4 856(1)
S(61)	1	109.8(2)	85.0(2)	81.6(2)		92.6(2)	158.0(2)	(0)	2.490(5)
P(1)	S(11)	S(13)	S(12)	S(14)	P(2)	S(23)	S(22)	S(21)	S(24)
<u>(11)</u>	2.00((())	2 2295(7)	2 2055(6)	2 21 47(0)	<u>()</u>	1.005(0)	2 2120(()	2.2450(7)	2 2115(0)
5(11)	2.000(0)	3.3383(7)	3.3933(0)	3.2147(9)	5(23)	1.995(0)	3.2129(0)	3.3439(7)	3.3113(8)
S(13)	112.6(2)	2.008(6)	3.1807(7)	3.3181(6)	S(22)	107.3(3)	1.996(6)	3.3104(7)	3.3/10(6)
S(12)	113.7(3)	103.2(3)	2.049(6)	3.4200(7)	S(21)	113.3(3)	111.5(3)	2.010(6)	3.2098(9)
S(14)	104.8(3)	109.6(3)	113.0(3)	2.051(6)	S(24)	109.1(5)	112.0(3)	103.7(3)	2.070(7)
P(3)	S(33)	S(31)	S(34)	S(32)	P(4)	S(43)	S(42)	S(44)	S(41)
S(33)	1.980(7)	3.1375(5)	3.2631(8)	3.3773(6)	S(43)	1.992(6)	3.3853(7)	3.3898(7)	3.1411(6)
S(31)	103.7(3)	2.009(6)	3.3690(7)	3.3706(8)	S(42)	114.4(3)	2.035(6)	3.2526(6)	3.5081(8)
S(34)	109.3(3)	113.5(3)	2.020(6)	3.2331(9)	S(44)	114.4(3)	105.9(3)	2.041(6)	3.3447(8)
S(32)	113.6(3)	112.0(3)	104.9(3)	2.057(6)	S(41)	99.7(3)	115.4(3)	107.1(3)	2.116(6)
P(5)	S(53)	S(54)	S(52)	S(51)	P(6)	S(62)	S(63)	S(61)	S(64)
S(53)	2.030(6)	3.1948(8)	3.4896(8)	3.4337(7)	S(62)	2.009(6)	3.3092(6)	3.2257(7)	3.3353(7)
S(54)	103.2(3)	2.046(6)	3.3448(8)	3.4639(6)	S(63)	110.9(3)	2.009(6)	3.4510(7)	3.1659(7)
S(52)	117.6(3)	109.6(3)	2.049(5)	3.1223(8)	S(61)	105.6(2)	116.8(3)	2.042(5)	3.4342(8)
S(51)	113.7(3)	114.6(3)	98.6(3)	2.070(6)	S(64)	109.3(3)	101.4(3)	112.8(3)	2.081(6)
()	(0)	(0)	(-)	(0)	-(0.)	(0)	(0)	(0)	

Ag(1)	S(13)	S(34)	S(52)	S(63)	Ag(2)		S(23)	S(21)	S(41)	S(51)
S(13)	2.466(5)	4.289(1)	4.045(2)	4.1962(9)	S(23)	2	.368(6)	4.192(1)	3.957(1)	4.0101(9)
S(34)	120.8(2)	2.467(4)	4.412(1)	4.3962(8)	S(21)	123	.0(3)	2.401(6)	4.2832(8)	4.247(2)
S(52)	105.6(2)	120.6(2)	2.613(4)	3.6298(9)	S(41)	106	.2(2)	118.7(3)	2.578(6)	3.5450(8)
S(63)	105.7(2)	113.3(2)	84.3(2)	2.792(5)	S(51)	104	.5(3)	112.7(2)	84.4(2)	2.698(7)
Ag(3)	S(31)	S (11)	S(64)	S(43)						
S(31)	2.387(7)	4.197(1)	3.964(2)	4.0152(9)						
S(11)	121.1(3)	2.433(7)	4.1996(9)	4.324(1)						
S(64)	108.1(3)	116.4(3)	2.508(8)	3.4672(6)						
S(43)	105.0(3)	115.8(3)	84.0(3)	2.670(8)						
Ag(4)-S(61)	3.72(3)	Ag	(5)-S(53)	4.00(4)	Ag(6)-	S(61)	4.10(3)		Ag(7)-S(53)	3.62(6)
S(63)	3.79(2)	-	S(42)	4.14(3)		S(53)	4.37(3)		S(63)	3.87(3)
S(61)	4.25(3)		S(51)	4.20(4)		S(61)	4.66(3)		S(51)	4.13(3)
S(43)	4.37(2)		S(43)	4.36(2)		S(42)	4.77(5)		S(61)	4.43(7)
S(64)	4.65(2)		S(42)	4.55(5)					S(42)	4.57(5)
S(53)	4.90(4)		S(53)	4.93(5)					S(42)	4.72(8)
. /									S(52)	4.88(2)
									S(61)	4.98(7)

TABLE 3—Continued

Ti^{IV} and P^V states, according to their ionic radii (21). Some of the Ag atoms in both of the structures exhibit high displacement parameters in agreement with (i) the d^{10} electronic configuration of the Ag⁺ cations (22) and (ii) their weak localization in the tunnels of the structural frameworks.

$AgTi_2(PS_4)_3$ Structure

Each TiS₆ octahedron shares three nonadjacent edges with three PS₄ tetrahedra to build up three polyhedra chains expanding along a pseudo-three-fold axis, with continuations around TiS₆ octahedron (Fig. 1a). The so-formed 3D interconnected chains sublattice is c/2 duplicated with the glide plane perpendicular to b. These two independent and interlocked sublattices make up a 3D skeleton and arrange cavities and wide tunnels in which Ag⁺ cations are located.

Ag(1) to Ag(3) atoms partially occupy distorted tetrahedral sites with Ag–S distances ranging from 2.368 to 2.792 Å (Table 3) in agreement with the corresponding values in the Ag₄P₂S₇ (23) and Ag₂P₂S₆ (24) thiophosphates. Ag(4) to Ag(7) atoms are located in the wide tunnels parallel to the *c* axis and present different coordinations (Table 3). Taking into account the weakness of the Ag–S bonds (Ag–S \geq 3.62Å) and their high thermal agitation (Table 2), more particularly along [001] (U₃₃ is about 10 times larger than U₁₁ and U₂₂), one can say that these Ag⁺ cations are delocalized in the wide tunnels.

$Ag_2NbTi_3P_6S_{25}$ Structure

The structural skeleton presents common features with the $AgTi_2(PS_4)_3$ one. However, in one of the three chains developing from the $Ti(1)S_6$ octahedra, an Nb_2S_{8+4} entity takes the place of the $Ti(4)S_6$ octahedron (Fig. 2a). This centrosymmetric Nb_2S_{8+4} entity is built up from two trigonal NbS₆ prisms sharing a lateral face; the two other lateral faces are capped with a sulfur atom (Fig. 3). Nb-S_{extraprism} distances (2.604 and 2.611Å) are similar to Nb-S_{intraprism} distances (2.461 to 2.675Å) (Table 5). The Nb-Nb distance is equal to 2.861(2)Å. The two lengths of the S(1)-S(2) edges of the common face are very different: 1.957(6) and 3.559(5)Å. These two sulfur atoms S(1) and S(2) belong only to the Nb₂S₈ biprism.

The tetracapped trigonal biprisms Nb₂S₁₂ share two opposite edges with P₂S₆ entities to build alternate chains parallel to *a* (Fig. 3). The centrosymmetric entity P₂S₆ results from sharing the S(41)–S(41) edge (3.110Å) of two P(4)S₄ tetrahedra (Fig. 3). The P(4)–P(4) distance is equal to 2.838(1)Å.

The structure can be described as a succession of (010) layers made up of alternate chains of TiS_6 octahedra and PS_4 tetrahedra. Cohesion between layers is assumed to occur by Nb_2S_{12} bipolyhedra, building up two independent and interlocked sublattices.

Ag(1) to Ag(3) atoms, with a coordination number of 3, are located in different cavities of the structural skeleton. As noticed in the other structure, some Ag⁺ cations are strongly delocalized in the tunnels parallel to c; besides, these

Atoms	τ	X	У	Ζ	$U_{\rm eq}({\rm \AA}^2)^a$
Nb	1	0.00352(5)	0.97566(4)	0.89133(8)	0.0196(6)
Ti(1)	1	0.98936(9)	0.75007(9)	0.8579(2)	0.012(1)
Ti(2)	1	0.7194(1)	0.89428(8)	0.8537(2)	0.018(1)
Ti(3)	1	0.7820(1)	0.12696(9)	0.6273(2)	0.016(1)
P(1)	1	0.9953(2)	0.8585(1)	0.8469(2)	0.015(2)
P(2)	1	0.1084(1)	0.6946(1)	0.8731(3)	0.017(2)
P(3)	1	0.8809(1)	0.6845(1)	0.8528(2)	0.022(2)
P(4)	1	0.0074(2)	0.0011(1)	0.6216(2)	0.013(2)
P(5)	1	0.2421(1)	0.8928(1)	0.1106(2)	0.015(2)
P(6)	1	0.7446(2)	0.9168(1)	0.1069(3)	0.020(2)
S(11)	1	0.9404(2)	0.9089(1)	0.7839(3)	0.021(2)
S(12)	1	0.0661(1)	0.8968(1)	0.9106(2)	0.021(2)
S(13)	1	0.9567(2)	0.8165(1)	0.9734(2)	0.018(2)
S(14)	1	0.0236(2)	0.8108(1)	0.7307(3)	0.021(2)
S(21)	1	0.0759(1)	0.7449(1)	0.9768(2)	0.018(2)
S(22)	1	0.0449(1)	0.6905(1)	0.7449(2)	0.020(2)
S(23)	1	0.8092(2)	0.2095(1)	0.6903(3)	0.024(2)
S(24)	1	0.8806(2)	0.1282(1)	0.5467(3)	0.024(2)
S(31)	1	0.7045(1)	0.8096(1)	0.9148(2)	0.019(2)
S(32)	1	0.9390(1)	0.6924(1)	0.9827(2)	0.021(2)
S(33)	1	0.1182(1)	0.1184(1)	0.7166(3)	0.022(2)
S(34)	1	0.9024(1)	0.7366(1)	0.7390(2)	0.018(2)
S(41)	1	0.0228(1)	0.0529(1)	0.4922(2)	0.021(2)
S(42)	1	0.0782(1)	0.9794(1)	0.7124(2)	0.012(2)
S(43)	1	0.9471(1)	0.0246(1)	0.7343(2)	0.022(2)
S(51)	1	0.2210(2)	0.8335(1)	0.0110(3)	0.027(2)
S(52)	1	0.7010(1)	0.1278(2)	0.7607(2)	0.032(2)
S(53)	1	0.8277(2)	0.0821(1)	0.7911(3)	0.025(2)
S(54)	1	0.7724(2)	0.0603(1)	0.5031(3)	0.035(2)
S(61)	1	0.7194(2)	0.6391(1)	0.7056(3)	0.045(3)
S(62)	1	0.7774(2)	0.9629(1)	0.2260(3)	0.037(2)
S(63)	1	0.8014(1)	0.8950(1)	0.9849(3)	0.030(2)
S(64)	1	0.6758(2)	0.9398(1)	0.0143(3)	0.026(2)
S(1)	1	0.0907(2)	0.0026(1)	0.0034(3)	0.023(2)
S(2)	1	0.0458(2)	0.0558(1)	0.9350(2)	0.028(2)
Ag(1)	1.00(4)	0.09146(8)	0.8638(1)	0.1002(1)	0.174(2)
Ag(2)	0.45(4)	0.8924(4)	0.8675(3)	0.6342(8)	0.43(1)
Ag(3)	0.52(4)	0.1009(3)	0.8791(3)	0.6668(4)	0.296(7)
Ag(4)	0.03(2)	1/4	1/4	0.71(2)	0.5(1)

 $^{a}U_{\mathrm{eq}}=(\sum_{i}U_{ii})/3.$

tunnels are narrower than in $AgTi_2(PS_4)_3$ compound and therefore allow fewer Ag(4) atoms (Table 4).

IONIC CONDUCTIVITY

The presence of delocalizable Ag^+ ions in the wide tunnels led us to measure the ionic conductivity of $AgTi_2(PS_4)_3$ and to compare it with that of the isotypic compound $NaTi_2(PS_4)_3$.

Total conductivity was measured by the complex impedance method (25) using an HP 4284A impedancemeter, with frequencies ranging from 20 Hz to 1 MHz. Electronic conductivity was studied with blocking electrodes at low voltage (26). We measured the conductivity at different temperatures, ranging from 50 to 350°C, under argon atmosphere, on two types of samples:

- single crystals elongated along c ($\approx 0.5 \times 0.5 \times 4 \text{ mm}^3$), fixed on alumina substrate and fitted with platinum lacquer, between two platinum electrodes;
- packed powder chips (diameter ≈ 8 mm, thickness ≈ 2 mm), heated at 450°C during 12 hr under purified argon atmosphere. Powders were obtained by heating at 500°C stoichiometric amounts of Ag₂S(Na₂S)+Ti+P+S in a dry evacuated sealed silica tube, then analyzed by X-ray diffraction.

The values of the total conductivity follow an Arrhenius law (Fig. 4). Activation energies were calculated from slopes of $\ln(\sigma T) = f(1/T)$. The maximum of the electronic conductivity part is never over 0.3%, so one can consider the electric conductivity as an almost fully ionic one.

The high values of conductivity along [001] for single crystals (Table 7) are certainly due to the high ionic mobility along the wide tunnels. The equivalent performances for $AgTi_2(PS_4)_3$ and $NaTi_2(PS_4)_3$ can be explained, on one hand, by the similar free monovalent ion concentrations (46% of Ag^+ in $AgTi_2(PS_4)_3$ and 43% of Na^+ in $NaTi_2(PS_4)_3$ are located in the tunnels), and on the other hand, by the very high "tunnels diameter/mobile ions radius" ratio. So the determining factors for the ionic conductivity (number and charge of ions, mobility) are similar for the two compounds.

The conductivity of chips is weak with a high activation energy (Table 7) because of the disorientation of microcrystals and the strong anisotropy of the ionic migration ways. At high temperature, $AgTi_2(PS_4)_3$ is a better conductor than the homologous compound $NaTi_2(PS_4)_3$.

DISCUSSION

The AgTi₂(PS₄)₃ and NaTi₂(PS₄)₃ structures are isotypic but the "Ti₂(PS₄)₃" skeleton is slightly distorted in the former: Ti_{(n})-Ti₍₁)-Ti_(m) angles are equal to 116.05(1), 116.90(2), and 126.98(1)° instead of exactly 120° in the sodium compound (13). In the two structures, about 45% of monovalent atoms (Na or Ag) are located in wide tunnels, forming very weak bonds: Na-S \geq 3.88Å (13) and Ag-S \geq 3.62Å (Table 3). Thus we can assume that the distortion results from the other monovalent atoms located in tetrahedral sites, keeping in mind that Ag-S links are less ionic than Na-S ones. So Na⁺ ions are found in narrow tunnels, surrounded by bulky and nearly regular sulfur tetrahedra, $\langle Na-S \rangle = 3.01\text{Å} > r_{Na^+} + r_{S^{2-}} \approx 2.80 \text{ Å}$ (13, 21), without noticeable constrictions of the framework. Ag-S

TABLE 5 Bond Distances (Å) and Interbond Angles (°) in the $Ag_2NbTi_3P_6S_{25}$ Structure

$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	Ti(1)		S(14)	S(13)	S(2	21)	S(34)	S(32	2)	S(22)
St31 84.4(2) 2.92(1) 3.345(5) 3.71(5) 3.42(15) 3.42(15) 4.12(15) St31 91.7(2) 100.7(2) 107.7(2) 2.349(4) 3.189(4) 3.420(5) 3.199(4) St32 17.7(2) 86.6(2) S1.30(1) 2.437(4) 3.652(5) St22 88.7(2) 167.0(2) 81.32(1) 90.47(1) 96.67(1) 2.432(6) St31 90.7(1) 96.67(1) 2.432(6) 3.182(5) 3.624(5) 3.124(6) 3.823(6) 4.81(5) 3.294(5) St31 90.7(1) 92.67(1) 3.324(5) 3.112(1) 3.324(5) 3.113(5) 3.244(5) St31 104.221 158.821 864(2) 2.454(4) 3.844(5) 3.1715) St41 81.321 81.31 81.321 81.321 81.321 81.321 81.321 St41 81.22 111.22 2.484(4) 3.244(5) 3.324(5) 3.244(5) 3.324(5) 3.324(5) 3.324(5) 3.324(5) 3.324(5) 3.324(5) 3.324(5) 3.324(5) 3.324(5) 3.324(5) 3.324(5) 3.324(5)	S(14)		2.368(5)	3.198(4)	3.58	38(5)	3.428(5)	4.790	(5)	3.371(5)
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	S(13)		84.4(2)	2.392(4)	3.34	5(5)	3.713(5)	3.461	(5)	4.812(5)
State 91-2(2) 110.7(2) 167.7(2) 2.430(4) 3.137(4) 3.466(5) State State State State State State State State State State State State State State State State State State State State	S(21)		97.7(2)	88.6(2)	2.39	7(4)	4.799(5)	3.420	(5)	3.159(4)
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	S(34)		91.2(2)	100.7(2)	167.7(2	2)	2.430(4)	3.187	(4)	3.466(5)
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	S(32)		171.2(2)	91.6(2)	90.0	2)	81.80(1)	2.437	(4)	3.652(5)
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	S(22)		88.7(2)	167.0(2)	81.3(2	2)	90.47(1)	96.67(1)	2.452(5)
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Ti (2)		S(61)	S(63)	S(e	62)	S(33)	S(64	4)	S(31)
S(63) 90.7(2) 2.398(4) 3.396(5) 4.769(5) 3.318(5) 3.324(5) S(62) S(12) 111.2(2) 2.408(7) 3.364(5) 3.364(5) 3.324(5) S(33) 104.2(2) 158.8(2) 86.4(2) 2.458(4) 3.384(5) 3.17(5) S(31) 85.3(2) 86.1(2) 158.1(2) 87.2(2) 2.458(4) 3.384(5) 3.17(5) S(31) S(54) S(51) S(52) S(24) S(23) S(53) S(54) 2.332(6) 3.167(6) 3.377(6) 3.129(5) 3.474(0) 3.616(5) S(51) S(24) 8.2021 102.5(2) 16.27(2) 2.448(5) 3.29(5) 3.29(5) 3.39(5) S(33) 96.5(2) 169.02 89.3(2) 85.3(2) 2.476(5) 3.740(5) 3.740(5) 3.740(5) 3.740(5) 3.39(6) 3.153(5) 3.19(6) 3.153(5) 3.19(6) 3.153(5) 3.19(6) 3.39(6) 3.20(5) 3.20(5) 3.20(5) 3.20(5) 3.20(5) 3.20(5) 3.20(5) 3.20(5) 3.20(5) 3.20(5) 3.20(5) 3.20(5)	S(61)		2.389(5)	3.404(5)	3.12	23(6)	3.823(6)	4.815	(5)	3.294(5)
Si62 N1.22 11.122 2.400(5) 3.327(6) 3.352(5) 4.792(6) Si33 104.22 158.82 86.42 2.454(4) 3.384(5) 3.177(5) Si34 167.32 79.92 94.22 87.22 2.455(4) 3.840(5) Si31 85.32 86.12 158.12 80.32 102.42 2.475(5) Ti3 Si54 2.352(5) 3.167(6) 3.376(5) 3.122(5) 4.701(6) 3.661(5) Si51 4402 2.381(4) 3.356(5) 3.822(5) 3.231(5) 4.531(5) Si52 100.402 82.02 2.297(4) 4.76(6) 3.341(5) 3.331(5) Si33 96.5(2) 165.902 85.3(2) 82.2(2) 2.449(4) S1.327(5) 3.291(5) 3.330(5) Si11 14.442 2.6144 Nb -S2(1) 2.469(4) Nb -S2(1) 2.471(4) S2.2 2.494(4) S1.494(5) 3.370(5) Si11 14.42(2) 2.631(4) S1.99 2.2471(4) S	S(63)		90.7(2)	2.398(4)	3.96	54(5)	4.769(5)	3.118	(5)	3.324(5)
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	S(62)		81.2(2)	111.2(2)	2.40	8(5)	3.327(6)	3.562	(5)	4.792(6)
S(64) 167.3(2) 79.9(2) 94.2(2) 87.2(2) 12.455.(4) 3.840(5) S(31) S(54) S(51) S(52) S(24) S(23) 2.455.(4) 3.840(5) S(51) S(54) 2.55(5) 3.167(6) 3.376(5) 3.129(5) 4.740(6) 3.616(5) S(51) 8.40(2) 2.381(4) 3.356(5) 3.322(5) 3.239(5) 3.330(5) S(32) 109.4(2) 89.2(2) 2.397(4) 4.760(5) 3.230(5) 3.330(5) S(33) 96.5(2) 109.0(2) 89.3(2) 82.6(2) 2.418(5) 3.230(5) 3.330(5) S(33) 96.5(2) 109.0(2) 80.3(2) 82.6(2) 97.6(2) 2.494(4) Nb-S(1) 2.248(4) S(43) 2.604(4) Nb-S(1) 2.477(4) S(11) 2.248(4) S(42) 2.675(4) Nb-S(1) 2.494(4) S(11) 2.249(4) S(22) 10.25(2) 112.6(2) 2.004(5) 3.388(6) S(11) 2.461(4) Nb-S(2) 2.611(4) Nb-S(2) 2.611(4) Nb-S(2) 2.611(4)	S(33)		104.2(2)	158.8(2)	86.4(2	2)	2.454(4)	3.384	(5)	3.177(5)
S(3) 85.3(2) 86.1(2) 158.1(2) 80.3(2) 102.4(2) 2.473(5) Ti(3) S(54) S(51) S(52) S(24) S(23) S(53) S(51) 84.0(2) 2.381(4) 3.376(5) 3.372(5) 3.420(5) 3.431(6) 3.65(5) S(21) 100.4(2) 89.2(2) 2.397(4) 4.760(5) 3.431(6) 3.153(5) S(24) 82.0(2) 105.5(2) 162.5(2) 2.4418(5) 3.230(5) 3.330(5) S(33) 96.5(2) 169.0(2) 89.3(2) 82.6(2) 2.4716(5) 3.740(5) S(11) 2.454(4) S(42) 2.640(4) S(12) 2.494(4) S(11) 2.464(3) S(42) 2.675(4) S(22) 102.4(2) 2.477(4) S(11) 1.1992(5) 3.330(5) 3.199(4) S(23) 114.5(3) 2.404(5) 3.438(5) 3.199(4) 3.388(6) S(12) 1.04.7(2) 2.057(5) 3.405(5) 3.199(4) 3.388(6) 3.42(5) 3.42(5) 3.42(5) 3.42(5) 3.42(5) 3.42(5) 3.42(5) 3.42(5) 3	S(64)		167.3(2)	79.9(2)	94.2(2)	87.2(2)	2.455	5(4)	3.840(5)
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	S(31)		85.3(2)	86.1(2)	158.1(2	2)	80.3(2)	102.4(2))	2.473(5)
S(54) 2.352(5) $3.167(6)$ $3.870(5)$ $3.129(5)$ $4.740(6)$ $3.616(5)$ S(51) 84.0(2) 2.381(4) $3.356(5)$ $3.822(5)$ $3.293(5)$ $4.833(5)$ S(21) 109.4(2) 89.2(2) $2.97(4)$ $4.760(5)$ $3.431(6)$ $3.153(5)$ S(23) 158.1(2) $85.3(2)$ 89.5(2) $82.6(2)$ $2.476(5)$ $3.740(5)$ S(33) 96.5(2) 109.0(2) 80.3(2) $85.3(2)$ $97.6(2)$ $2.494(4)$ Nb-S(2) $2.461(4)$ Nb-S(2) $2.469(4)$ Nb-S(1) $2.477(4)$ S(11) $2.528(4)$ S(42) $2.677(4)$ Nb-S(1) $2.477(4)$ S(11) $2.648(4)$ S(42) $2.677(4)$ S(2) $2.043(5)$ $3.42(5)$ $3.307(5)$ $3.198(4)$ S(11) $14.4(2)$ $2.004(4)$ $S(12)$ $2.477(4)$ $S(23)$ 104.72 $2.037(5)$ $3.492(5)$ $S(21)$ $10.32(2)$ $10.32(2)$ $10.32(2)$ $10.32(2)$ $10.32(2)$	Ti(3)		S(54)	S(51)	S(:	52)	S(24)	S(2.	3)	S(53)
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	S(54)		2,352(5)	3,167(6)	3.87	(5)	3,129(5)	4,740	(6)	3.616(5)
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	S(51)		84.0(2)	2.381(4)	3.35	56(5)	3.822(5)	3.293	(5)	4.853(5)
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	S(52)		109.4(2)	89.2(2)	2.39	97(4)	4.760(5)	3.431	(6)	3.153(5)
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	S(24)		82.0(2)	105.5(2)	162.50	2)	2.418(5)	3,230	(5)	3,330(5)
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	S(23)		158.1(2)	85 3(2)	89.5(2)	82 6(2)	2.476	(5) (5)	3.740(5)
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	S(53)		96.5(2)	169.0(2)	80.3(2	2)	85.3(2)	97.6(2))	2.494(4)
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Nb-S(2)		2 461(4)	Nh-	-S(2)		2 469(4)	Nb-	S(1)	2 477(4)
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	S(1)		2.401(4) 2.528(4)	110	S(43)		2.409(4) 2.604(4)	110	S(12)	2.477(4) 2.611(4)
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	S(1) S(11)		2.648(4)		S(42)		2.675(4)		5(12)	2.011(4)
S(14)1.992(5) $3.359(5)$ $3.307(5)$ $3.198(4)$ $S(21)$ $1.981(5)$ $3.385(5)$ $3.159(4)$ $3.388(6)$ S(11)114.4(2)2.004(5) $3.216(5)$ $3.392(5)$ $S(23)$ $114.5(3)$ $2.043(5)$ $3.422(5)$ $3.230(5)$ S(12)109.5(3)104.7(2)2.057(5) $3.405(5)$ $S(22)$ $102.5(2)$ $112.6(2)$ $2.009(5)$ $3.412(5)$ S(13)104.0(2)112.9(2)114.4(2) $2.065(5)$ $S(24)$ $113.3(2)$ $103.3(2)$ $110.8(3)$ $2.075(6)$ P(3)S(33)S(32)S(34)S(31)P(4) $S(43)$ $S(42)$ $S(41)$ $S(41)$ S(33) $2.001(5)$ $3.347(5)$ $3.347(5)$ $3.347(5)$ $3.37(5)$ $3.338(5)$ $S(42)$ $07.4(2)$ $2.008(5)$ $3.477(5)$ S(34) $12.99(2)$ $104.8(2)$ $2.013(5)$ $3.411(5)$ $3.349(5)$ $3.417(5)$ $3.411(5)$ $3.496(5)$ $3.111(8)$ S(31) $102.7(2)$ $110.0(2)$ $113.4(3)$ $2.066(5)$ $S(41)$ $110.92(2)$ $95.2(2)$ $2.103(5)$ $3.111(8)$ S(54) $S(52)$ $S(51)$ $S(53)$ $2.063(5)$ $3.153(5)$ $S(64)$ $S(63)$ $S(61)$ $S(62)$ S(54) $109.3(3)$ $2.063(5)$ $3.153(5)$ $3.158(5)$ $3.118(5)$ $3.266(6)$ $3.421(5)$ S(51) $103.4(2)$ $109.3(3)$ $2.063(5)$ $3.153(5)$ $S(61)$ $109.4(3)$ $110.5(3)$ $2.008(5)$ $3.123(6)$ S(51)	P(1)	S(14)	S (11)	S(12)	S(13)	P(2)	S(21)	S(23)	S(22)	S(24)
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	S(14)	1.992(5)	3.359(5)	3.307(5)	3.198(4)	S(21)	1.981(5)	3.385(5)	3.159(4)	3.388(6)
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	S(11)	114.4(2)	2.004(5)	3.216(5)	3.392(5)	S(23)	114.5(3)	2.043(5)	3.422(5)	3.230(5)
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	S(12)	109.5(3)	104.7(2)	2.057(5)	3.405(5)	S(22)	102.5(2)	112.6(2)	2.069(5)	3.412(5)
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	S(13)	104.0(2)	112.9(2)	114.4(2)	2.065(5)	S(24)	113.3(2)	103.3(2)	110.8(3)	2.075(6)
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	P(3)	S(33)	S(32)	S(34)	S(31)	P(4)	S(43)	S(42)	S(41)	S(41)
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	S(33)	2.001(5)	3.347(5)	3.345(5)	3.177(5)	S(43)	1.997(5)	3.228(5)	3.379(5)	3.457(5)
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	S(32)	113.2(3)	2.009(5)	3.187(4)	3.338(5)	S(42)	107.4(2)	2.008(5)	3.496(5)	3.411(5)
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	S(34)	112.9(2)	104.8(2)	2.013(5)	3,410(5)	S(41)	111.0(2)	116.5(2)	2.103(5)	3.110(8)
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	S(31)	102.7(2)	110.0(2)	113.4(3)	2.066(5)	S(41)	114.8(3)	112.0(2)	95.2(2)	2.107(5)
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	P(5)	S(54)	S(52)	S(51)	S(53)	P(6)	S(64)	S(63)	S(61)	S(62)
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	S(54)	1.973(5)	3.428(5)	3.167(6)	3.394(5)	S(64)	1.994(5)	3.118(5)	3.266(6)	3.421(5)
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	S(52)	116.8(3)	2.051(5)	3.356(5)	3.153(5)	S(63)	102.5(2)	2.005(5)	3.297(6)	3.412(5)
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	S(51)	103.4(2)	109.3(3)	2.063(5)	3.455(5)	S(61)	109.4(3)	110.5(3)	2.008(5)	3.123(6)
Ag(1)S(12)S(22)S(53) $S(12)$ 2.449(4)4.593(5)4.250(5) $S(22)$ 137.1(2)2.486(4)4.182(6) $S(53)$ 111.9(2)108.1(2)2.679(4)Ag(3)S(52)S(24)S(14) $S(52)$ 2.421(8)3.793(5)4.356(6) $S(24)$ 100.4(3)2.518(6)4.227(5) $S(14)$ 117.3(3)108.9(3)2.678(7)	S(53)	114.2(3)	99.9(2)	113.6(2)	2.067(5)	S(62)	116.9(3)	115.9(3)	101.7(2)	2.020(5)
S(12) $2.449(4)$ $4.593(5)$ $4.250(5)$ $S(22)$ $137.1(2)$ $2.486(4)$ $4.182(6)$ $S(53)$ $111.9(2)$ $108.1(2)$ $2.679(4)$ $Ag(3)$ $S(52)$ $S(24)$ $S(14)$ $S(52)$ $S(24)$ $S(14)$ $S(52)$ $2.518(6)$ $4.227(5)$ $S(14)$ $117.3(3)$ $108.9(3)$ $2.678(7)$ $2.678(7)$	Ag(1)	S(12)	S(22)	S(53)		Ag(2)	S(11)	S(32)	S(61)	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	S(12)	2.449(4)	4.593(5)	4.250(5)	-	S(11)	2.345(6)	4.478(5)	3.956(6)	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	S(22)	137.1(2)	2.486(4)	4.182(6)		S(32)	128.0(4)	2.634(7)	4.657(5)	
Ag(3)S(52)S(24)S(14)Ag(4)-S(31) $2.4(2) \times 2$ S(52) $2.421(8)$ $3.793(5)$ $4.356(6)$ $4.227(5)$ $5(14)$ $100.4(3)$ $2.518(6)$ $4.227(5)$ S(14) $117.3(3)$ $108.9(3)$ $2.678(7)$	S(53)	111.9(2)	108.1(2)	2.679(4)		S(61)	104.0(4)	122.9(4)	2.67(2)	
S(52) 2.421(8) 3.793(5)4.356(6)S(24)100.4(3) 2.518(6) 4.227(5)S(14)117.3(3)108.9(3) 2.678(7)	Ag(3)	S(52)	S(24)	S(14)		Ag(4)-S(31)	2.4(2)×2	
S(24)100.4(3) 2.518(6) 4.227(5)S(14)117.3(3)108.9(3) 2.678(7)	S(52)	2.421(8)	3.793(5)	4.356(6)	-					
S(14) 117.3(3) 108.9(3) 2.678(7)	S(24)	100.4(3)	2.518(6)	4.227(5)						
	S(14)	117.3(3)	108.9(3)	2.678(7)						

FIG. 1. (001) projections of the $AgTi_2(PS_4)_3$ structure: (a) interlocked chains of edge-sharing TiS_6 octahedra and PS_4 tetrahedra, small circles represent Ag atoms; (b) schematic view of the two interlocked sublattices.

bonds are much stronger, $\langle Ag-S \rangle = 2.53 \text{\AA} < r_{Ag^+} + r_{S^{2-}} \approx 2.80 \text{\AA}$ (21), so silver atoms are found in distorted sites along the wide tunnels, explaining the skeleton distortion.

 $Ag_2NbTi_3P_6S_{25}$ structure exhibits only small-diameter tunnels hosting less than 2% of Ag atoms. The P_2S_6 entity, already reported in the titanium thiophosphate $Ti_4P_8S_{29}$ (27) and in the niobium thiophosphate NbP₂S₈-2D (28),

FIG. 2. (001) projections of the $Ag_2NbTi_3P_6S_{25}$ structure: (a) interlocked chains of TiS_6 octahedra, PS_4 tetrahedra, and Nb_2S_8 trigonal biprisms; (b) schematic view of the two interlocked sublattices.

presents here the shortest S–S distance (3.110 Å) between two unlinked sulfur atoms. The other polyhedral entity Nb₂S₁₂ has been already reported in NbP₂S₈-2D (28), NbP₂S₈-3D (29), Nb₂PS₁₀ (15), and Nb₄P₂S₂₁ (14). Its formation is due, on one hand, to the stabilization of the 4*d*¹ electronic configuration of Nb^{IV} by a D_{3h} symmetry crystal field, as for V^{IV}-3d¹ in V₂PS₁₀ (30), and, on the other hand, to the formation of $(S_2)^{2-}$ anionic pairs corresponding to the short bond S(1)-S(2) = 1.957 Å. In all reported Nb₂S₁₂ entities, the Nb-Nb distance is very similar (2.859 to 2.884 Å), whatever the number of formed $(S_2)^{2-}$ pairs: two (28,29) or four (14,15,31). This distance is practically

 TABLE 6

 Extreme Values of Bond Lengths and Interbond Angles for the

 Anionic Polyhedra Both Present in the AgTi₂(PS₄)₃ and

 Ag₂NbTi₃P₆S₂₅ Structures

		AgTi ₂ (PS ₄) ₃	Ag ₂ NbTi ₃ P ₆ S ₂₅
TiS ₆ octahedra	bonds (Å) angles (°)	$\begin{array}{l} 2.378 \leq Ti{\text{-}}S \leq 2.512 \\ 81.1 \leq S{\text{-}}Ti{\text{-}}S \leq 110.3 \end{array}$	$2.352 \le \text{Ti-S} \le 2.494$ $80.3 \le \text{S-Ti-S} \le 111.2$
PS ₄ tetrahedra	bonds (Å) angles (°)	$\begin{array}{l} 1.980 \leq PS \leq 2.116 \\ 98.6 \leq SPS \leq 117.6 \end{array}$	$\begin{array}{l} 1.973 \leq P\text{-}S \leq 2.075 \\ 99.9 \leq S\text{-}P\text{-}S \leq 116.9 \end{array}$

unchanged in isotypic Nb₂X₁₂ entities with different anions: 2.871 Å in NbS₂Cl₂ (32) and 2.89 Å in Nb₂Se₉ (33), like in the metal (2.863 Å) (34). Thus there is a real Nb^{IV}–Nb^{IV} bond with a d^1-d^1 magnetic coupling forming isolated cationic pairs in a diamagnetic solid. Stability of this Nb₂S₁₂ entity may explain the failure of the synthesis of the "AgNbTi(PS₄)₃" phase with AgTi₂(PS₄)₃ structure type. These results justify the following writing of the oxidation states and charge balance: Ag^I₄Nb^{IV}₂Ti^{IV}₆(P₂S₆)²⁻ (PS₄)³₁₀(S₂)²⁻₂.

It is noteworthy that we find in both structures the same TiP_3S_{12} unit built up from one octahedron sharing three opposite edges with PS_4 tetrahedra. This unit is the node of the interconnected polyhedra chains, inducing a particular space arrangement leading to the formation of interlocked structures. This phenomenon is reported in CrP_3S_{9+x} (35),

built up from three interlaced sublattices made up with CrP_3S_{12} entities similar to TiP_3S_{12} ; these three sublattices are linked to each other by van der Waals interactions only. In the present situation, one can see only two 3D-interlocked sublattices linked to each other by silver atoms forming ionocovalent Ag–S bonds. The two frameworks are c/2 shifted (about 5.8 Å). Figure 1b depicts the imbrication of the two sublattices, each of them built up from TiS_6 and PS_4 polyhedra sharing edges for $AgTi_2(PS_4)_3$. For $Ag_2NbTi_3P_6S_{25}$, imbrication is similar but only in (010) layers: the 2D sublattices are laterally linked to each other along *b* via Nb₂S₁₂ entities (Fig. 2b).

In $ATi_2(PS_4)_3$ (A = Ag, Na), A^+ ions are located in the wide tunnels and are strongly delocalizable, inducing a high monodimensional ionic conductivity. Besides, the intertunnel migration pathways exhibit narrow "bottlenecks", inducing a low value of the tridimensional conductivity. The silver compound presents the best performance at high temperature, in accordance with the important quadrupolar distortion of Ag⁺ ion (36) and its polarizability, 6 times higher than the Na⁺ one (37,38).

CONCLUSION

The TiP₃S₁₂ structural units (1 TiS₆ octahedron +3 PS₄ tetrahedra) exist in $AgTi_2(PS_4)_3$ and $Ag_2NbTi_3P_6S_{25}$ crystal structures, built up from anionic polyhedra sharing edges only. These TiP₃S₁₂ units are the nodes of the two interlocked and independent sublattices; cohesion between them

 Ti(3)
 P(6)

 P(5)
 P(2)

 P(2)
 Ti(1)

 P(1)
 S(2)

 Nb(1)
 S(1)

 Nb(1)
 S(1)

 P(5)
 S(2)

 Nb(1)
 Ti(2)

 P(5)
 S(4)

 P(5)
 S(4)

 P(5)
 S(4)

 P(5)
 P(5)

FIG. 3. Connection of two polyhedra chains by a tetracapped trigonal biprism Nb_2S_{12} also bonded to P_2S_6 bitetrahedron.

FIG. 4. Ionic conductivity vs temperature for $ATi_2(PS_4)_3$ compounds (A = Ag, Na) in the form of ceramics (circles) and single crystals along [001] (triangles).

is assumed to occur by S-Ag-S bridging bonds. The Nb^{IV} presence in Ag₂NbTi₃P₆S₂₅ leads to the formation of tetracapped trigonal biprisms Nb₂S₁₂, including two disulfide anions (S₂)²⁻. This latter original structure is more compact than AgTi₂(PS₄)₃, characterized by a sulfur specific volume $V_{spe}(S) = 36.28 \text{ Å}^3$ for Ag₂NbTi₃P₆S₂₅ and $V_{spe}(S) = 41.87 \text{ Å}^3$ for AgTi₂(PS₄)₃.

The open $AgTi_2(PS_4)_3$ structure, isotypic with $NaTi_2(PS_4)_3$, exhibits very wide tunnels along [001] containing 46% of Ag^+ cations. These ions, weakly linked, can move easily and result in a high ionic conductivity along the *c* axis. Tridimensional conductivity is 1/200 as great as that along [001] due to the narrowness of interconnections between the wide tunnels.

Due to the great stability of the $[Ti_2(PS_4)_3]$ structural skeleton, insertion of various species may be considered. LiTi₂(PS₄)₃, KTi₂(PS₄)₃, Ba_{0.5}Ti₂(PS₄)₃, and Ga_{0.33}Ti₂(PS₄)₃ have been synthesized (39) and seem to be

 TABLE 7

 Ionic Conductivity (at 50°C and 300°C) and Activation Energy Values for Single Crystals and Ceramics of AgTi₂(PS₄)₃ and NaTi₂(PS₄)₃

	Single cry	stals; along	[001]	Ceramics			
	$\sigma_{50^\circ C}$ (S.cm ⁻¹)	$\sigma_{300^{\circ}\mathrm{C}}$ (S.cm ⁻¹)	E _a (eV)	$\sigma_{50^\circ C}$ (S.cm ⁻¹)	$\sigma_{300^\circ C}$ (S.cm ⁻¹)	E _a (eV)	
AgTi ₂ (PS ₄) ₃ NaTi ₂ (PS ₄) ₃	$\begin{array}{c} 4.4 \times 10^{-5} \\ 8.5 \times 10^{-5} \end{array}$	$\begin{array}{c} 0.9 \times 10^{-2} \\ 1.1 \times 10^{-2} \end{array}$	0.37 0.34	$\begin{array}{c} 1.6 \times 10^{-10} \\ 3.5 \times 10^{-10} \end{array}$	$\begin{array}{c} 6.8 \times 10^{-5} \\ 1.1 \times 10^{-5} \end{array}$	0.86 0.63	

isotypic with NaTi₂(PS₄)₃ according to their X-ray diffractograms. The presence of a reducible transition element in the skeleton allows insertion of an electropositive element. Our electrochemical intercalation results show that $A_{1+x}Ti_2(PS_4)_3$ (A = Li or Na for $0 \le x \le 2$) compositions can be reached (39). These new types of thiophosphates set up a wide structural family with high electrochemical potentiality.

ACKNOWLEDGMENTS

The authors thank particularly Dr. Sylvie Jaulmes for her assistance in crystal structure determinations and refinements.

REFERENCES

- J. Rouxel, *in* "Intercalated Layered Materials" (F. Levy, Ed.), p. 201, D. Reidel, Dordrecht, 1979.
- J. B. Goodenough, H. Y.-P. Hong, and J. A. Kafalas, *Mater. Res. Bull.* 11, 203 (1976).
- R. Brec, G. Ouvrard, A. Louisy, J. Rouxel, and A. Le Mehauté, Solid State Ionics 6, 185 (1982).
- M.-H. Whangbo, R. Brec, G. Ouvrard, and J. Rouxel, *Inorg. Chem.* 24, 2459 (1985).
- P. Colombet, A. Leblanc, M. Danot, and J. Rouxel, J. Solid State Chem. 41, 174 (1982).
- G. Burr, E. Durand, M. Evain, and R. Brec, J. Solid State Chem. 103, 514 (1993).
- P. Colombet, A. Leblanc, M. Danot, and J. Rouxel, *Nouv. J. Chim.* 7, 333 (1983).
- S. Lee, P. Colombet, G. Ouvrard, and R. Brec, *Mater. Res. Bull.* 21, 917 (1986).
- Z. Ouili, A. Leblanc, and P. Colombet, J. Solid State Chem. 66, 86 (1987).
- 10. S. Lee, P. Colombet, G. Ouvrard, and R. Brec, *Inorg. Chem.* 27, 1291 (1988).
- 11. E. Durand, M. Evain, and R. Brec, J. Solid State Chem. 102, 146 (1993).
- S. H. Elder, A. Van der Lee, R. Brec, and E. Canadell, J. Solid State Chem. 116, 107(1995).
- X. Cieren, J. Angenault, J.-C. Couturier, S. Jaulmes, M. Quarton, and F. Robert, J. Solid State Chem. 121, 230 (1996).
- R. Brec, M. Evain, P. Grenouilleau, and J. Rouxel, *Rev. Chim. Min.* 20, 283 (1983).

- R. Brec, P. Grenouilleau, M. Evain, and J. Rouxel, *Rev. Chim. Min.* 20, 295 (1983).
- 16. J. de Meulenaer and H. Tompa, Acta Crystallogr., Sect. A 19, 1014 (1965).
- 17. E. R. Howells, D. C. Phillips, and D. Rogers, *Acta Crystallogr.* 3, 210 (1950).
- G. M. Sheldrick, SHELXS86, A program for the Solution of Crystal Structure, University of Göttingen, 1986.
- 19. W. R. Busing, Acta Crystallogr., Sect. A 27, 683 (1971).
- 20. P. J. Becker and P. Coppens, Acta Crystallogr., Sect. A 31, 417 (1975).
- 21. R. D. Shannon, Acta Crystallogr., Sect. A 32, 751 (1976).
- 22. E. Gaudin, L. Fischer, F. Boucher, M. Evain, and V. Petricek, Acta Crystallogr., Sect. B 53, 67 (1997).
- P. Toffoli, P. Khodadad, and N. Rodier, *Acta Crystallogr.*, Sect. B 33, 1492 (1977).
- P. Toffoli, P. Khodadad, and N. Rodier, Acta Crystallogr., Sect. B 34, 3561 (1978).
- 25. J. E. Bauerle, J. Phys. Chem. Solids 30, 2657 (1969).
- C. Wagner, "Proceedings, 7ème Comité International de Thermodynamique et de Cinétique Electrochimique," Lindau, Allemagne, 1955.

- M. Z. Jandali, G. Eulenberger, and H. Hahn, Z. Anorg. Allg. Chem. 530, 144 (1985).
- P. Grenouilleau, R. Brec, M. Evain, and J. Rouxel, *Rev. Chim. Min.* 20, 628 (1983).
- M. Evain, R. Brec, G. Ouvrard, and J. Rouxel, *Mater. Res. Bull.* 19, 41 (1983).
- R. Brec, G. Ouvrard, M. Evain, P. Grenouilleau, and J. Rouxel, J. Solid State Chem. 47, 174 (1983).
- 31. J. Do and H. Yun, Inorg. Chem. 35, 3729 (1996).
- J. Rijnsdorp, G. J. de Lange, and G. A. Wiegers, J. Solid State Chem. 30, 365 (1979).
- A. Meerschaut, R. Berger, and J. Rouxel, *Acta Crystallogr.*, Sect. B 35, 1747 (1979).
- 34. NBS Monogr. (U.S.) 25, 1967 (1984).
- P. Fragnaud, M. Evain, E. Prouzet, and R. Brec, J. Solid State Chem. 102, 390 (1993).
- 36. P. W. M. Jacobs, M.R.S. Bull. 31, 72 (1989).
- 37. J. R. Tessman and A. H. Kahn, Phys. Rev. 92, 890 (1953).
- 38. J. Pirenne and E. Kartheuser, Physica 30, 2005 (1964).
- 39. X. Cieren, Thèse de l'Université Pierre et Marie Curie, Paris, 1996.